Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Seasonal upwelling in coastal environments supports high primary production by increasing concentrations of inorganic nutrients in the euphotic zone. Diatoms typically dominate planktonic primary production and community composition during seasonal upwelling, especially in temperate ecosystems. Some diatoms elevate their competitive fitness by producing polyunsaturated aldehydes (PUAs). These phytochemicals act to reduce the fecundity of their grazers by reducing sperm motility, lowering egg production and viability, and delaying embryo development, reducing diatom consumptive pressure. While research into the mechanisms driving PUA production includes bottom-up factors (i.e., nutrient availability), few studies have explored how dissolved carbon dioxide (pCO2) concentration affects PUA production. In this study, we analyzed the production of bioactive PUAs (2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal) in two diatom species found in the Salish Sea, an inland sea of the North Pacific ecosystem, under varying pCO2 concentrations that are experienced during seasonal upwelling events. We found that elevated pCO2 concentration caused an increase in carbon uptake in the diatoms, but did not lead to more PUA production, and at times caused a decrease in production. Our results suggest that carbon enrichment does not elevate the chemically defensive capabilities of diatoms by way of elevated PUA production.more » « lessFree, publicly-accessible full text available July 10, 2026
- 
            Diatoms are key primary producers across marine, freshwater, and terrestrial ecosystems. They are responsible for photosynthesis and secondary production that, in part, support complex food webs. Diatoms can produce phytochemicals that have transtrophic ecological effects which increase their competitive fitness. Polyunsaturated aldehydes (PUAs) are one class of diatom-derived phytochemicals that are known to have allelopathic and anti-herbivory properties. The anti-herbivory capability of PUAs results from their negative effect on grazer fecundity. Since their discovery, research has focused on their production by pelagic marine diatoms, and their effects on copepod egg production, hatching success, and juvenile survival and development. Few investigations have explored PUA production by the prolific suite of benthic marine diatoms, despite their importance to coastal trophic systems. In this study, we tested eight species of benthic diatoms for the production of the bioactive PUAs 2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal. Benthic diatom species were isolated from the Salish Sea, an inland sea within the North Pacific ecosystem. All species were found to be producers of at least two PUAs in detectable concentrations, with five species producing all three PUAs in quantifiable concentrations. Our results indicate that production of PUAs from Salish Sea benthic diatoms may be widespread, and thus these compounds may contribute to benthic coastal food web dynamics through heretofore unrecognized pathways. Future studies should expand the geographic scope of investigations into benthic diatom PUA production and explore the effects of benthic diatoms on benthic consumer fecundity.more » « less
- 
            Abstract Large crystal growth and characterization of the optical and terahertz (THz) properties of organic nonlinear optical (NLO) crystal NMBA (4‐Nitro‐4′‐methylbenzylidene aniline) is presented. The reported method of crystal growth consistently produces high‐quality single crystals. The THz generation efficiency and optical properties of NMBA to other THz generation crystals including BNA and MNA are compared. The low THz absorptions that make NMBA an ideal source for THz time‐domain spectroscopy are highlighted.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
